Diffractive EM Jet A_N at FMS with run 17 data preliminary request

Xilin Liang UC Riverside Mar. 15, 2023

Contact information

- PA: Xilin Liang¹, Latif Kabir¹, Kenneth Barish¹
- PA email address: <u>xilin.liang@email.ucr.edu</u>
- Supervisor: Kenneth Barish¹
- Supervisor email address: kenneth.barish@ucr.edu

Physics motivation

- Diffractive process may play a role to explain large A_N .
 - A_N decreases with Increasing number of photons in EM jets.
 - Isolated π^0 events have larger A_N .

Data set

- Data set: run 17 pp transverse $\sqrt{s} = 510$ GeV ,fms stream
 - (pp500_production_2017)
- Production type: MuDst ; Production tag: P22ib
- STAR library: SL20a
- Triggers for FMS : FMS small board sum, FMS large board sum and FMS-JP
 - Trigger list: FMS-JP0, FMS-JP1, FMS-JP2, FMS-sm-bs1, FMS-sm-bs2, FMS-sm-bs3, FMS-lg- bs1, FMS-lgbs2, FMS-lg-bs3
 - Trigger veto: FMS-LED
- Requirement: Event must contain Roman Pot (RP) information (pp2pp).
 - Already filter out events without RP response. Totally 180 fills.
 Total number of events from data set sample (with FMS and RP coincidence)
 Total number of events with FMS points
 Total number of events with FMS EM-jets
 860 M

Diffractive process (case 2 & 3 only)

Case 1:

Single diffractive event: we can detect only 1 proton track on east side RP. Require: only 1 east side RP track

Case 2:

Single diffractive event: we can detect only 1 proton track on west side RP.

Require: sum of west side tracks energy (proton

+ EM Jet) less than beam energy

Case 3:

Double diffractive event: we can detect 1 proton track on east side RP and 1 proton track on west side RP.

Require: sum of west side tracks energy (proton + EM Jet) less than beam energy

Procedure for data analysis

Event selection and corrections

• FMS

- 9 Triggers, veto on FMS-LED
- bit shift, bad / dead / hot channel masking
- Jet reconstruction: StJetMaker2015 , Anti-kT, R<0.7 , FMS point energy > 2 GeV, p_T > 2 GeV/c, FMS point as input.
- Apply energy correction.
- Only allow acceptable beam polarization (up/down).
- Vertex (Determine vertex z priority according to TPC , VPD, BBC.)
 - Vertex $|z| < 80 \ cm$

Roman Pot and Diffractive process:

- Acceptable cases: (in next slide)
 - 1. Only 1 west RP track + no east RP track
 - 2. Only 1 east RP track + only 1 west RP track
 - RP track must be good track:
 - a) Each track hits 7 or 8 planes
 - b) $-0.5 < p_x < 0.3$ [GeV/c] , $0.25 < |p_y| < 0.4$ [GeV/c]
 - Sum of west RP track energy and all EM Jet energy

• BBC ADC sum cuts:

• West Small BBC ADC sum < 450

Corrections:

Energy correction and Underlying Event correction

x _F	E sum Cut
0.1 - 0.15	E _{sum} < 265 GeV
0.15 - 0.2	E _{sum} < 280 GeV
0.2 - 0.25	E _{sum} < 295 GeV
0.25 - 0.3	E _{sum} < 305 GeV
0.3 - 0.35	E _{sum} < 315 GeV
0.35 - 0.4	E _{sum} < 330 GeV
0.4 – 0.45	E _{sum} < 340 GeV

Transverse single spin asymmetry (A_N) calculation

• We use **cross ratio** method to calculate the diffractive EM Jet A_N at FMS.

• Raw
$$A_N: \varepsilon = \frac{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} - \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}}{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} + \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}} \approx pol * A_N * \cos(\phi)$$

- Plot A_N as a function of X_F . ($x_F = \frac{E_{EM jet}}{E_{Beam}}$), $x_F \in [0.1, 0.45]$
- Divide full ϕ range [- π , + π] into 16 bins.

Systematic uncertainty (EM-jet with all photon multiplicity)

- Systematic uncertainties for residual background effect mainly come from the cut for selecting signal from background.
 - Energy sum cut: change the energy sum cut to check the uncertainty.
 - Small west BBC ADC sum cut: change 450 to 400
- Polarization uncertainty: 1.1 % (back up)

Calculate each systematic uncertainty by result difference fraction when changing the cuts:

 $uncertainty = \frac{|A_{N,change\ cut} - A_{N,origin}|}{|A_{N,origin}|}$

x _F	E sum Cut original	E sum Cut systematic
0.1 - 0.15	E _{sum} < 265 GeV	E _{sum} < 255 GeV
0.15 - 0.2	E _{sum} < 280 GeV	E _{sum} < 265 GeV
0.2 - 0.25	E _{sum} < 295 GeV	E _{sum} < 275 GeV
0.25 - 0.3	E _{sum} < 305 GeV	E _{sum} < 290 GeV
0.3 - 0.35	E _{sum} < 315 GeV	E _{sum} < 300 GeV
0.35 - 0.4	E _{sum} < 330 GeV	E _{sum} < 310 GeV
0.4 – 0.45	E _{sum} < 340 GeV	E _{sum} < 320 GeV

x _F range	E_sum	Small BBC	Summary			
0.1 - 0.15	5%	2%	5%			
0.15 – 0.2	3%	15%	15%			
0.2 – 0.25	8%	21%	22%			
0.25 – 0.3	15%	9%	17%			
0.3 – 0.45	9%	11%	14%			
Yellow beam						
x _F range	E_sum	Small BBC	Summary			
0.1 - 0.15	15%	20%	25%			
0.15 – 0.2	49%	111%	121%			
0.2 – 0.25	3%	41%	41%			
0.25 – 0.3	63%	85%	106%			
0.3 – 0.45	34%	33%	48%			

Blue beam

Run 17 FMS diffractive EM-jet A_N results

- EM-jet with all photon multiplicity
- Cross ratio method is applied to extract the A_N .
- Consider only 5 x_F ranges: [0.1,0.15], [0.15, 0.2], [0.2, 0.25], [0.25, 0.3], [0.3, 0.45]
- They seems to get A_N close to 0 at low x_F ranges, but A_N greater than 0 at high x_F ranges.
- The sign is mostly positive, different from run 15 results.
- Preliminary request plot 1

Systematic uncertainty (EM-jet with 1 or 2 photon multiplicity)

- Systematic uncertainties for residual background effect mainly come from the cut for selecting signal from background.
 - Energy sum cut: change the energy sum cut to check the uncertainty.
 - Small BBC ADC sum cut: change 450 to 400

Calculate each systematic uncertainty by result difference fraction when changing the cuts:

 $uncertainty = \frac{|A_{N,change\ cut} - A_{N,origin}|}{|A_{N,origin}|}$

x _F	E sum Cut original	E sum Cut systematic
0.1 - 0.15	E _{sum} < 265 GeV	E _{sum} < 255 GeV
0.15 - 0.2	E _{sum} < 280 GeV	E _{sum} < 265 GeV
0.2 - 0.25	E _{sum} < 295 GeV	E _{sum} < 275 GeV
0.25 - 0.3	E _{sum} < 305 GeV	E _{sum} < 290 GeV
0.3 - 0.35	E _{sum} < 315 GeV	E _{sum} < 300 GeV
0.35 - 0.4	E _{sum} < 330 GeV	E _{sum} < 310 GeV
0.4 – 0.45	E _{sum} < 340 GeV	E _{sum} < 320 GeV

Diue Dealli						
x _F range	E_sum	Small BBC	Summary			
0.1 - 0.15	91%	663%	670%			
0.15 – 0.2	2%	6%	6%			
0.2 – 0.25	1%	2%	2%			
0.25 – 0.3	9%	94%	94%			
0.3 – 0.45	6%	11%	12%			
Yellow beam						
x _F range	E_sum	Small BBC	Summary			
0.1 - 0.15	11%	7%	13%			
0.15 – 0.2	8%	1%	8%			
0.2 – 0.25	10%	19%	22%			
0.25 – 0.3	52%	64%	82%			
0.3 – 0.45	31%	5%	31%			

Dlug hoom

Run 17 FMS diffractive EM-jet A_N results

- EM-jet with 1 or 2 photon multiplicity
- Cross ratio method is applied to extract the A_N .
- Still consider only 5 x_F ranges: [0.1,0.15], [0.15, 0.2], [0.2, 0.25], [0.25, 0.3], [0.3, 0.45]
- The larger A_N values are observed for EM-jet with 1 or 2 photon multiplicity. They are 2.5 σ to be non-zero.
- Preliminary request plot 2

12

Comparison between run 17 FMS inclusive and diffractive EM-jet A_N results

- We compare run 17 FMS inclusive (done by Bishnu) and diffractive 1 or 2 photon multiplicity EM-jet A_N results.
- Both results are A_N results as the function of x_F (with exactly same x_F bins [0.1,0.15], [0.15, 0.2], [0.2, 0.25], [0.25, 0.3], [0.3, 0.35])
- Preliminary request plot 3

Conclusion

- Run 17 diffractive EM-jet A_N using FMS is at preliminary stage for requesting for preliminary.
- The $A_{\rm N}\,$ for run 17 are showing the mostly positive values but close to zero.
- We do not observe the negative sign for A_N, so it's different from run 15 diffractive EM-jet A_N results.
- The comparison plot between inclusive and diffractive EM-jet A_N at $\sqrt{s} = 510$ GeV show that the diffractive processes do not contribute to large A_N for inclusive processes.